3.588 \(\int \frac{(a+b x)^2}{\sqrt{1-x^2}} \, dx\)

Optimal. Leaf size=54 \[ \frac{1}{2} \left (2 a^2+b^2\right ) \sin ^{-1}(x)-\frac{3}{2} a b \sqrt{1-x^2}-\frac{1}{2} b \sqrt{1-x^2} (a+b x) \]

[Out]

(-3*a*b*Sqrt[1 - x^2])/2 - (b*(a + b*x)*Sqrt[1 - x^2])/2 + ((2*a^2 + b^2)*ArcSin[x])/2

________________________________________________________________________________________

Rubi [A]  time = 0.023162, antiderivative size = 54, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {743, 641, 216} \[ \frac{1}{2} \left (2 a^2+b^2\right ) \sin ^{-1}(x)-\frac{3}{2} a b \sqrt{1-x^2}-\frac{1}{2} b \sqrt{1-x^2} (a+b x) \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^2/Sqrt[1 - x^2],x]

[Out]

(-3*a*b*Sqrt[1 - x^2])/2 - (b*(a + b*x)*Sqrt[1 - x^2])/2 + ((2*a^2 + b^2)*ArcSin[x])/2

Rule 743

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)*(a + c*x^2)^(p
 + 1))/(c*(m + 2*p + 1)), x] + Dist[1/(c*(m + 2*p + 1)), Int[(d + e*x)^(m - 2)*Simp[c*d^2*(m + 2*p + 1) - a*e^
2*(m - 1) + 2*c*d*e*(m + p)*x, x]*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, m, p}, x] && NeQ[c*d^2 + a*e^2,
0] && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] && IntQuadraticQ[a, 0, c, d, e, m
, p, x]

Rule 641

Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*(a + c*x^2)^(p + 1))/(2*c*(p + 1)),
x] + Dist[d, Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[p, -1]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{(a+b x)^2}{\sqrt{1-x^2}} \, dx &=-\frac{1}{2} b (a+b x) \sqrt{1-x^2}-\frac{1}{2} \int \frac{-2 a^2-b^2-3 a b x}{\sqrt{1-x^2}} \, dx\\ &=-\frac{3}{2} a b \sqrt{1-x^2}-\frac{1}{2} b (a+b x) \sqrt{1-x^2}-\frac{1}{2} \left (-2 a^2-b^2\right ) \int \frac{1}{\sqrt{1-x^2}} \, dx\\ &=-\frac{3}{2} a b \sqrt{1-x^2}-\frac{1}{2} b (a+b x) \sqrt{1-x^2}+\frac{1}{2} \left (2 a^2+b^2\right ) \sin ^{-1}(x)\\ \end{align*}

Mathematica [A]  time = 0.0322044, size = 38, normalized size = 0.7 \[ \frac{1}{2} \left (\left (2 a^2+b^2\right ) \sin ^{-1}(x)-b \sqrt{1-x^2} (4 a+b x)\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^2/Sqrt[1 - x^2],x]

[Out]

(-(b*(4*a + b*x)*Sqrt[1 - x^2]) + (2*a^2 + b^2)*ArcSin[x])/2

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 42, normalized size = 0.8 \begin{align*}{b}^{2} \left ( -{\frac{x}{2}\sqrt{-{x}^{2}+1}}+{\frac{\arcsin \left ( x \right ) }{2}} \right ) -2\,ab\sqrt{-{x}^{2}+1}+{a}^{2}\arcsin \left ( x \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^2/(-x^2+1)^(1/2),x)

[Out]

b^2*(-1/2*x*(-x^2+1)^(1/2)+1/2*arcsin(x))-2*a*b*(-x^2+1)^(1/2)+a^2*arcsin(x)

________________________________________________________________________________________

Maxima [A]  time = 1.75586, size = 57, normalized size = 1.06 \begin{align*} -\frac{1}{2} \, \sqrt{-x^{2} + 1} b^{2} x + a^{2} \arcsin \left (x\right ) + \frac{1}{2} \, b^{2} \arcsin \left (x\right ) - 2 \, \sqrt{-x^{2} + 1} a b \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/(-x^2+1)^(1/2),x, algorithm="maxima")

[Out]

-1/2*sqrt(-x^2 + 1)*b^2*x + a^2*arcsin(x) + 1/2*b^2*arcsin(x) - 2*sqrt(-x^2 + 1)*a*b

________________________________________________________________________________________

Fricas [A]  time = 1.85792, size = 113, normalized size = 2.09 \begin{align*} -{\left (2 \, a^{2} + b^{2}\right )} \arctan \left (\frac{\sqrt{-x^{2} + 1} - 1}{x}\right ) - \frac{1}{2} \,{\left (b^{2} x + 4 \, a b\right )} \sqrt{-x^{2} + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/(-x^2+1)^(1/2),x, algorithm="fricas")

[Out]

-(2*a^2 + b^2)*arctan((sqrt(-x^2 + 1) - 1)/x) - 1/2*(b^2*x + 4*a*b)*sqrt(-x^2 + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.244047, size = 42, normalized size = 0.78 \begin{align*} a^{2} \operatorname{asin}{\left (x \right )} - 2 a b \sqrt{1 - x^{2}} - \frac{b^{2} x \sqrt{1 - x^{2}}}{2} + \frac{b^{2} \operatorname{asin}{\left (x \right )}}{2} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**2/(-x**2+1)**(1/2),x)

[Out]

a**2*asin(x) - 2*a*b*sqrt(1 - x**2) - b**2*x*sqrt(1 - x**2)/2 + b**2*asin(x)/2

________________________________________________________________________________________

Giac [A]  time = 1.76367, size = 47, normalized size = 0.87 \begin{align*} \frac{1}{2} \,{\left (2 \, a^{2} + b^{2}\right )} \arcsin \left (x\right ) - \frac{1}{2} \,{\left (b^{2} x + 4 \, a b\right )} \sqrt{-x^{2} + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^2/(-x^2+1)^(1/2),x, algorithm="giac")

[Out]

1/2*(2*a^2 + b^2)*arcsin(x) - 1/2*(b^2*x + 4*a*b)*sqrt(-x^2 + 1)